

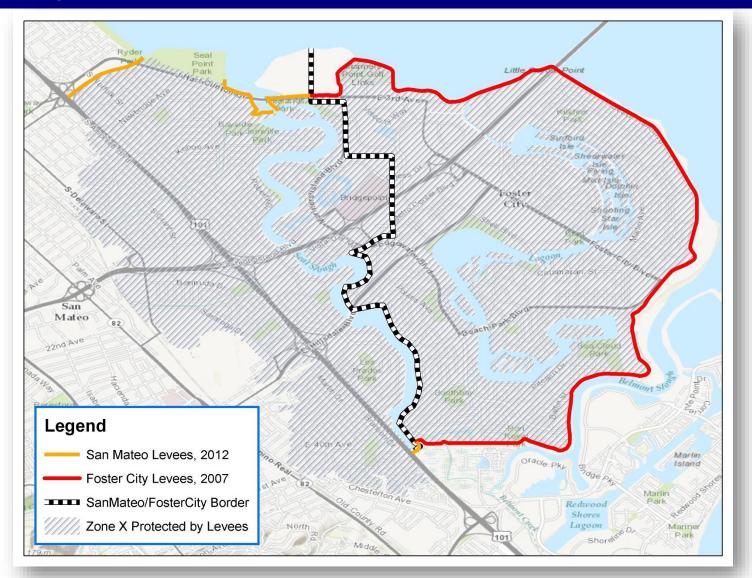
LEVEE PROTECTION PLANNING AND IMPROVEMENTS PROJECT

Improving Today and Preparing for Tomorrow

San Mateo County Association of Realtors August 8, 2017

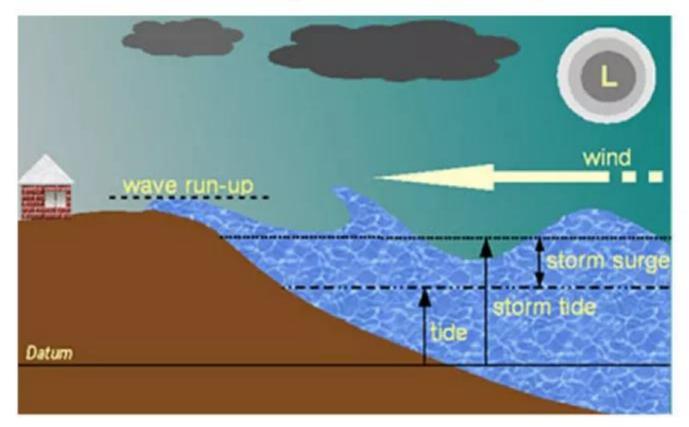
Schaaf & Wheeler

Presentation

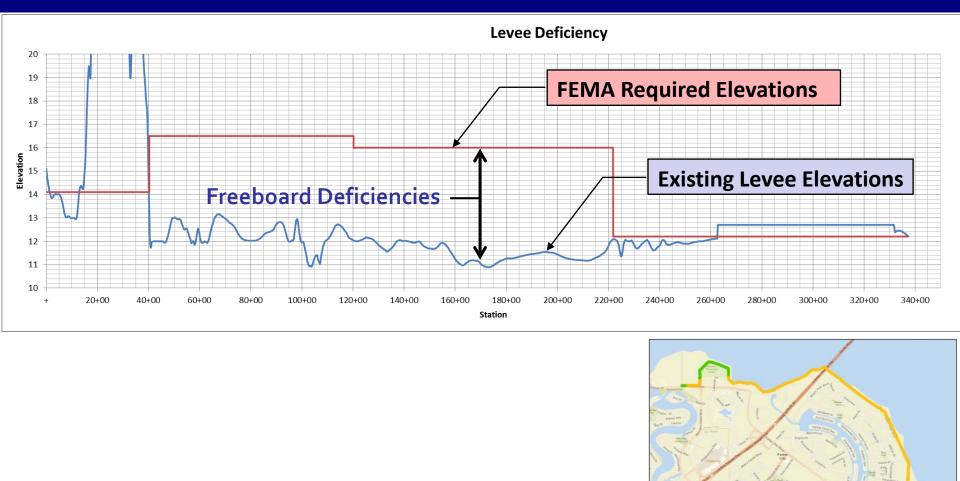

- Need for Levee Improvements
- City Council Direction
- Proposed Levee Improvements
- Accomplishments to Date
- Remaining Schedule

Levee System Overview

Typical Levees in Foster City



FEMA Coastal Flood Hazard Study (2014)


Maximum vertical elevation reached by the sea:

Combination of the wave set-up that is induced landward of the wave breaking zone and wave run-up

Levees do not meet requirements for FEMA accreditation.

No Deficiency

Freeboard Deficient

What will happen if the levee is not improved?

Properties will be placed within a Special Flood Hazard Area.

- 9,000 parcels in Foster City
- 8,000 parcels in San Mateo
- Those with federally backed mortgages, and others at the discretion of their lender, would be required to carry flood insurance.
 - Premiums could be thousands of dollars per year.
- Substantial property improvements are prohibited in high-risk flood areas without elevating above the base flood elevation, which would be as much as 5 feet deep in some locations.

Property values could substantially drop.

City Council Direction

City Council direction is to not let this happen.

□ The levee is Foster City's most important asset.

- Protects city from flooding
- Access to regional recreational amenity

On May 8, 2017 Council directed City staff to:

- Further develop and analyze the "2050 sea level rise and future adaptation strategy [levee] design."
- Submit design to the appropriate regulatory agencies for processing.
- Proceed with a 30-Year General Obligation Bond for the Levee Protection Planning and Improvements Project. (CIP 301-657)

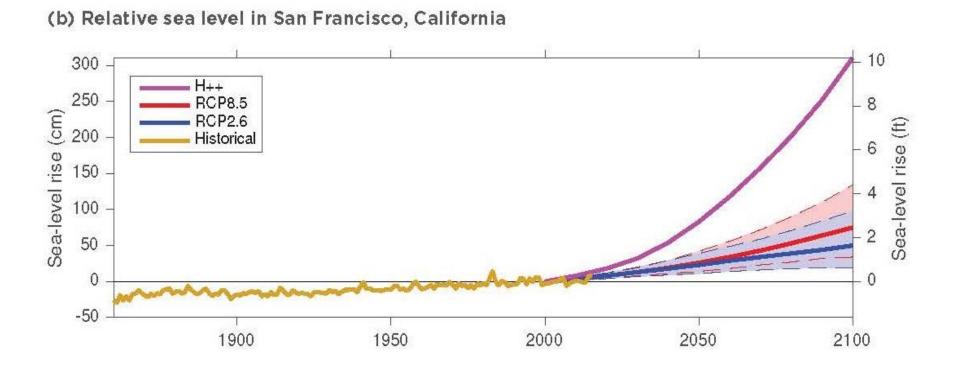
Google earth -

Regulatory Environment

- Levee improvement project requires numerous permits.
- The State recognizes that Sea Level Rise (SLR) is a significant threat.
- BCDC requires resilience through design to the high range of 2050 SLR.
- Both RWQCB and BCDC require risk assessments and adaptation strategies to address 2100 SLR.

Policies for a Rising Bay Project Final Report

SAN FRANCISCO BAY CONSERVATION AND DEVELOPMENT COMMISSIO



Google earth

Current Sea Level Rise Predictions

California Ocean Protection Council, <u>Rising Seas in California: An Update</u> on Sea-Level Rise Science, April 2017.

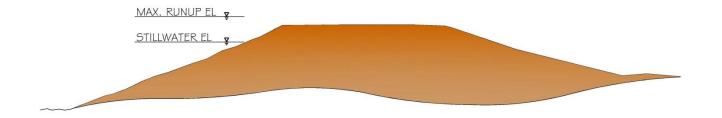
Sea Level Rise Predictions – April 26, 2017

			Sea Level Rise Predictions April 26, 2017			
	"Likely	Range of				
	Projection"	SLR	67%			
	Published in	Published in	Confident	95%	99.5%	Extreme
	2012	2012	"Likely"	Confident	Confident	"H++"
Year	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
2030	0.5	0.2 – 1.0	0.3 – 0.5	0.6	0.8	
2050	0.9	0.4 – 2.0	0.6 – 1.1	1.4	1.9	
2100	3.0	1.4 – 5.5	1.6 – 3.4	4.4	6.9	10.0
2150			2.8 – 5.8	7.7	13.0	22.0

2017 SLR estimates presented in the table reflect a future in which there are no significant global efforts to limit or reduce emissions.

Sea Level Rise Predictions – April 26, 2017

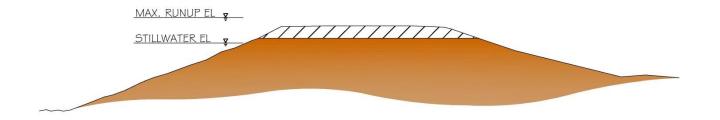
			Sea Level Rise Predictions April 26, 2017			
	"Likely Projection" Published in 2012	Range of SLR Published in 2012	67% Confident "Likely"	95% Confident	99.5% Confident	Extreme "H++"
Year	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
2030	0.5	0.2 – 1.0	0.3 – 0.5	0.6	0.8	
2050	0.9	0.4 – 2.0	0.6 – 1.1	1.4	1.9	
2100	3.0	1.4 – 5.5	1.6 – 3.4	4.4	6.9	10.0
2150			2.8 – 5.8	7.7	13.0	22.0


2017 SLR estimates presented in the table reflect a future in which there are no significant global efforts to limit or reduce emissions.

The proposed improvement project assumes 2 feet of sea level rise and provides resilience through 2050 with 99.5 percent confidence.

Raise the Existing Earthen Levee

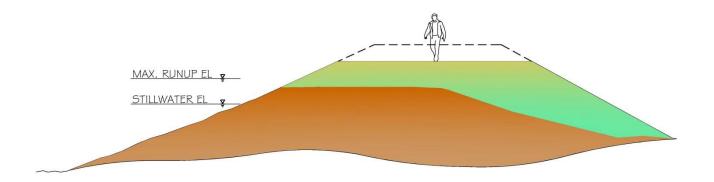
Used for roughly 15 percent of the improved six miles



Raise the Existing Earthen Levee

Used for roughly 15 percent of the improved six miles

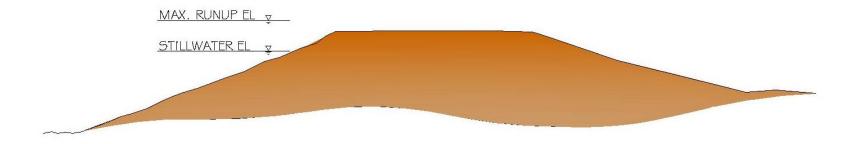
Top foot of soil (plus or minus) is removed.



Raise the Existing Earthen Levee

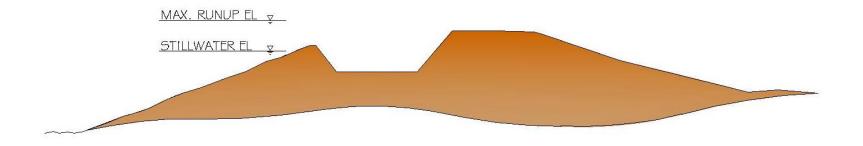
Used for roughly 15 percent of the improved six miles

Engineered fill added to levee to meet FEMA requirements plus 2 feet of sea level rise with allowance for settlement.



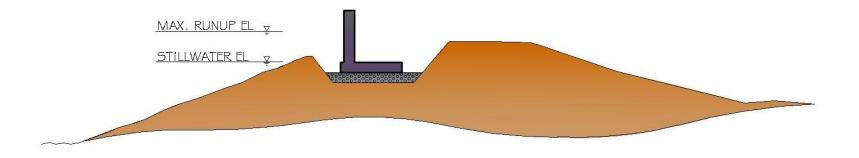
Add or Replace Structural Floodwall

Used for roughly 15 percent of the improved six miles



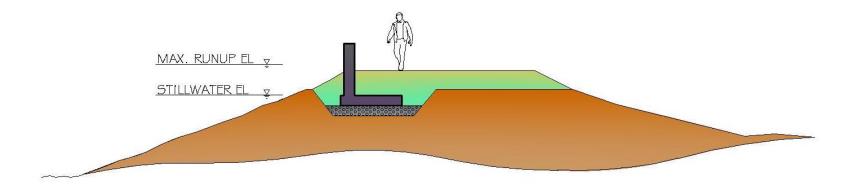
Add or Replace Structural Floodwall

Used for roughly 15 percent of the improved six miles



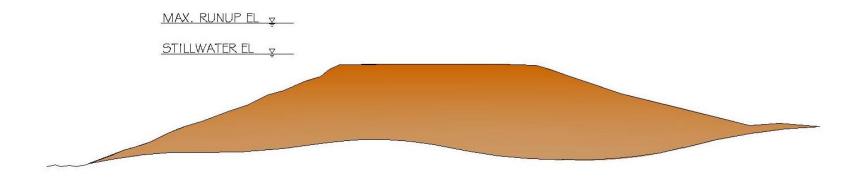
Add or Replace Structural Floodwall

Used for roughly 15 percent of the improved six miles



Add or Replace Structural Floodwall

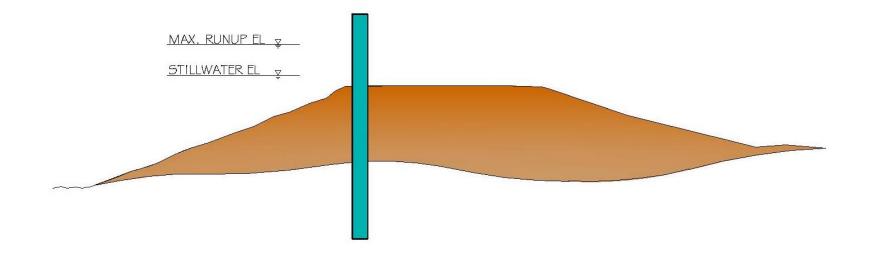
Used for roughly 15 percent of the improved six miles



Hybrid Design

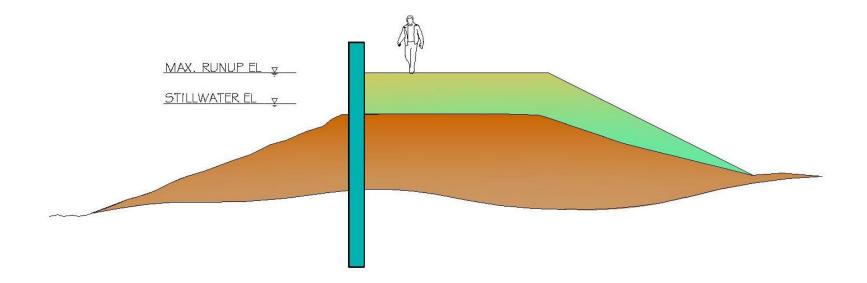
Used for roughly 70 percent of the improved six miles

Used in constrained rights-of-way where the existing level of flood protection would be compromised during construction by building a conventional flood wall.



Hybrid Design

Used for roughly 70 percent of the improved six miles


Flood protection is provided once sheet pile is driven to structurallyrequired depth.

Hybrid Design

Used for roughly 70 percent of the improved six miles

Fill to widen Bay Trail and maintain relatively short adjacent wall.

How much will this cost?

Project Alternative	Estimated Cost
1. FEMA Accreditation Only ¹	\$60 million
2. 2050 SLR ²	\$90 million
3. 2100 SLR ³	\$170 million

- 1. Does not meet regulatory requirements for permitting.
- 2. Assumes 80-year project life, possibly with future adaptation.
- 3. Not selected.

Google earth

Project Benefits

□ FEMA Accreditation!

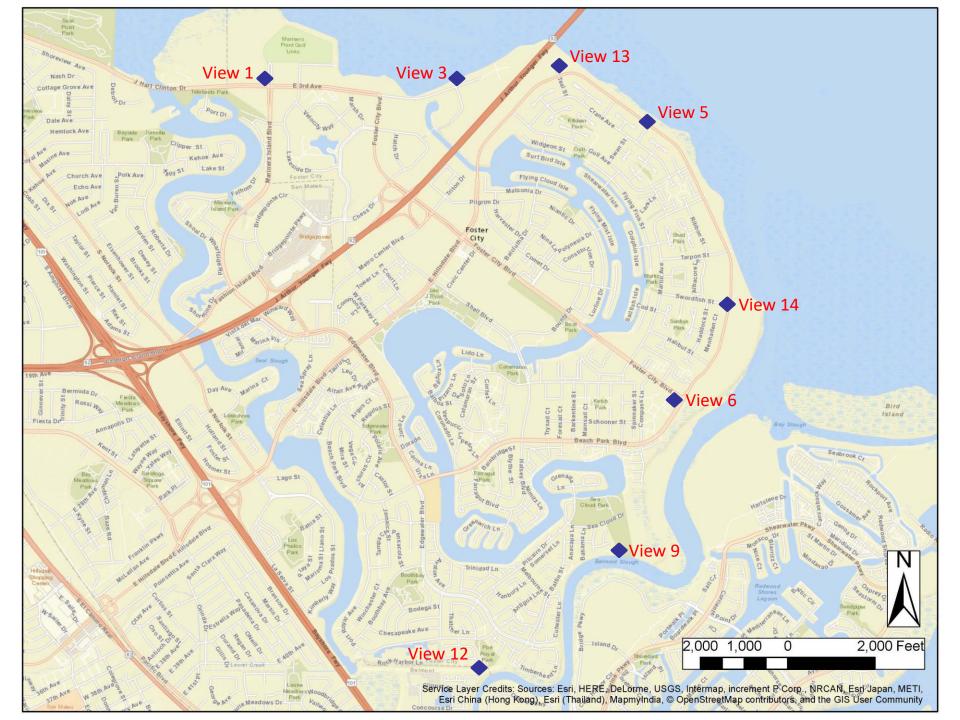
- 9,000 parcels in Foster City
- 8,000 parcels in San Mateo
- Bay Trail Improvements
 - Widened to meet current Bay Trail Guidelines (18 feet)
 - Better access to Trail and Bay (ADA-compliant)
- New Native Landscaping
- New Trail Amenities

Google earth

Ongoing Design Concerns

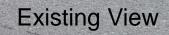
Aesthetics

- Views from adjacent properties and streets
- View from Bay and across Belmont Slough
- 🛛 Graffiti
 - Sheet piling fascia
 - Coatings
- Disruption During Construction
 - Bay Trail detour
 - Noise and vibration (potential for "silent press" method)
 - Existing utilities within levee footprint


Ongoing Design Concerns

Aesthetics

- Views from adjacent properties and streets
- View from Bay and across Belmont Slough
- 🛛 Graffiti
 - Sheet piling fascia
 - Coatings
- Disruption During Construction
 - Bay Trail detour
 - Noise and vibration (potential for "silent press" method)
 - Existing utilities within levee footprint



View 1 – East Third Avenue

R)

0

0

View 1 – East Third Avenue

View 3 – Lincoln Center Drive

Google earth

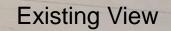
Schaaf & Wheeler Consulting Civil Engineers

Existing View

View 3 – Lincoln Center Drive

Google earth

Schaaf & Wheeler Consulting Civil Engineers


31

Proposed View

View 13 – Bridgeview Park

View 13 – Bridgeview Park

Proposed View

View 5 – Beach Park Boulevard

Existing View from Sanderling Street

Google earth

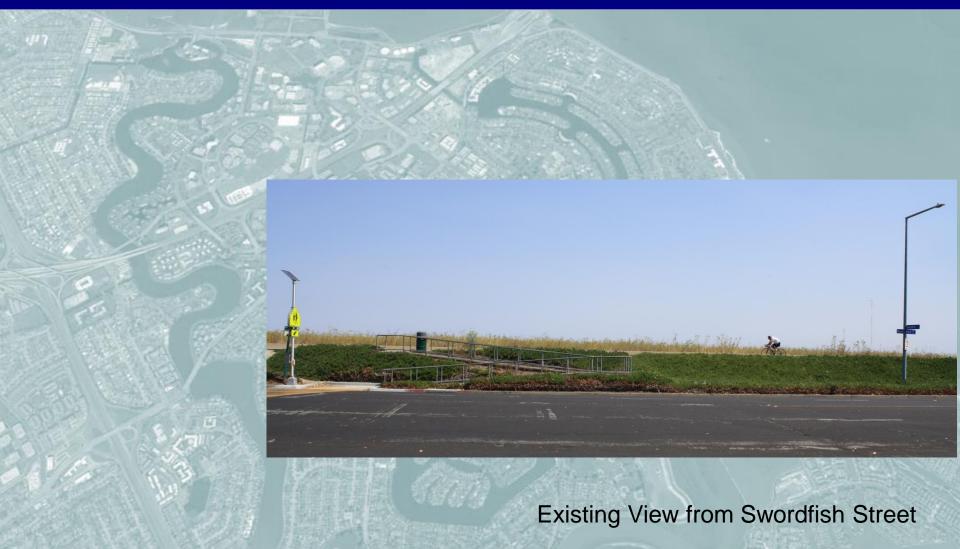
View 5 – Beach Park Boulevard

Proposed View from Sanderling Street

Google earth

Schaaf & Wheeler Consulting Civil Engineers

-


View 5 – Beach Park Boulevard

Existing View from Second Story

Proposed View from Second Story

Google earth

Proposed View from Swordfish Street

Google earth

Schaaf & Wheeler Consulting Civil Engineers

39

Existing View from Second Floor

Proposed View from Second Floor

Existing View from Foster City Boulevard

Google earth

Proposed View from Foster City Boulevard

Google earth

View 9 – Sea Cloud Park

View 9 – Sea Cloud Park

View 12 – Port Royal Park

View 12 – Port Royal Park

Adaptation to Future Sea Level Rise

The project as designed is resilient to predicted sea level rise through 2050 with 99.5 percent confidence. How can it be adapted to possibly higher sea level rise, particularly beyond 2050?

Build another project in the future if and when it is needed

Build a project designed for 2100 high range SLR now

Adapt to rising sea level over time

- Foundation depth for 2100 SLR now; add wall height later
- Future anchor walls
- Future offshore solutions

View 3 – Lincoln Center Drive

Google earth

Schaaf & Wheeler Consulting Civil Engineers



Existing View

View 3 – Lincoln Center Drive

Google earth

Schaaf & Wheeler Consulting Civil Engineers

Proposed View

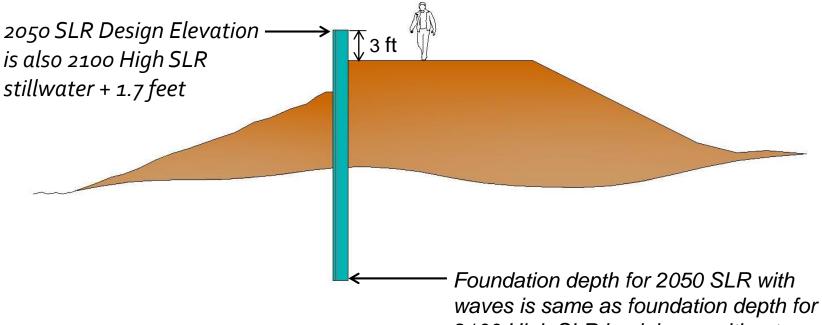
View 3 – Lincoln Center Drive

Google earth

Schaaf & Wheeler Consulting Civil Engineers

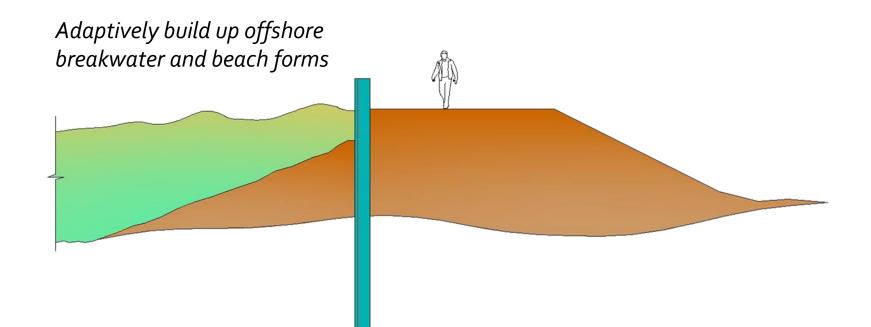
View of Floodwall if Set to 2100 SLR

Adaptation to Future Sea Level Rise


- The project as designed is resilient to predicted sea level rise through 2050 with 99.5 percent confidence. How can it be adapted to possibly higher sea level rise, particularly beyond 2050?
- Build another project in the future if and when it is needed
- Build a project designed for 2100 high range SLR now
- Adapt to rising sea level over time
 - Foundation depth for 2100 SLR now; add wall height later
 - Future anchor walls
 - Future offshore solutions

Google earth -

Those Darn Waves....


2100 High SLR back levee without waves

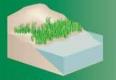
Adaptive Construction in Future

Future Adaptation to Rising Sea Levels

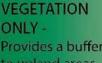
Schaaf & Wheeler Consulting Civil Engineers

55

Improving Today and Preparing for Tomorrow


Future Adaptation

Source: NOAA

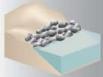

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

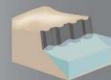
Living Shorelines



Provides a buffer to upland areas and breaks small waves. Suitable for low wave environments.


EDGING -Added structure holds the toe of existing or vegetated slope in place. Suitable for most areas except high wave energy environments.

SILLS -Parallel to vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.



BREAKWATER -(vegetation optional) - Offshore structures intended to break waves, reducing the force of wave action, and encourage sediment hardened shoreline settings and sites accretion. Suitable for most areas.

Coastal Structures

REVETMENT -Lays over the slope of the shoreline and protects it from erosion and waves. Suitable for sites with existing structures.

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy with existing hard shoreline structures

Schaaf & Wheeler **Consulting Civil Engineers**

56

Future Adaptation

Why don't we pursue constructing a living shoreline (LS) now? *Regulatory Challenges*

- Lack of LS data
- Beneficial Fill
- Suitable Materials
- Construction Methods/ Timing
- Sequential permits
- Long timeframes
- High cost

Source: California Coastal Conservancy

Project Accomplishments to Date

July 2014	FEMA Completes Coastal Flood Study (CCAMP)
August 2014	City Surveys Existing Levees
March 2015	Detailed Evaluation of CCAMP Results
July 2015	Levee Protection Planning Study
August 2015	Presentation to Regulatory Agencies and Government Officials
October 2016	Basis of Levee Design
November 2016	Draft Environmental Impact Report
April 2017	Final Environmental Impact Report
May 2017	Council Directs Staff to Proceed with Design
July 2017	Begin Ballot Measure Polling
August 2017	60% Design Documents

Google earth

Remaining Schedule

*w*۲

September 2017	Update Regulatory Agencies and Government Officials
Fall 2017	Submit Regulatory Permit Applications
Fall 2017	Obtain FEMA Approval of Design
March 2018	Complete 90% Design Documents
March 2018	Ballot Measure Resolution of Necessity
April 2018	Adopt Ordinance for Ballot Measure
June 2018	Ballot Measure for Voter Approval
August 2018	Advertise for Bid
October 2018	Award Construction Contract
January 2019	Begin Construction
Summer 2021	Project Completion

Google earth 🔬

LEVEE PROTECTION PLANNING AND IMPROVEMENTS PROJECT

Improving Today and Preparing for Tomorrow

San Mateo County Association of Realtors August 8, 2017

Schaaf & Wheeler

